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MOLECULAR BIOLOGY OF THE CBHII CELLULASE ENZYME

I. Introduction

Enzymatic hydrolysis processes have the ability to convert
cellulose to fermentable sugars for fermentation to ethanol at
efficiencies approaching 100%. The preferred enzymes for this
process are produced from mutants of the filamentous fungus,
Trichoderma reesei. This microorganism secretes large amounts of
an enzyme system which is capable of totally breaking down
cellulose to fermentable sugars. However, further improvement is
necessary in the cost and rate of production, as well as the
efficacy of the enzyme in the hydrolysis process if such
processes are to be commercialized. This contract employed
genetic engineering/molecular biological techniques to carry out
studies to better understand the action of one component of the
cellulase enzyme system and attempt to improve its activity
through modifications to the enzymes composition and structure.

Cellulases represent a multi-component enzyme system which act
synergistically to hydrolyze crystalline cellulose to glucose.
Three types of enzymatic activity participate in these reactions:
° Endoglucanases act on internal linkages in a relatively
random manner to produce shorter chain fragments;

Exo-cellobichydrolases (exoglucanases) cleave
cellobiosyl units from the non-reducing end of cellulose
polymer chains; and

B-glucosidases cleave glucosyl units from the
non-reducing end of cellooligosaccharides.

The exoglucanase activity is provided by two separate enzymes,
cellobiohydrolase (CBH) I and II. CBHII represents approximately
15% of the total cellulase enzyme produced by most strains of T.
reesei. CBHII may be the best single enzyme for saccharifying
cellulose. When supplemented with RB-glucosidase, CBHII exhibits
the highest rate and activity on amorphous forms of cellulose
[1]. Native CBHII is relatively stable, attacks solid
substrates, and requires no cofactors for activity.

The nucleotide sequence encoding CBHII (cbh2 gene) was published
independently by Chen et al. and by Teeri et al. in 1987. The
genomic clone is 1608 base pairs long and contains three introns
(49, 56, and 90 base pairs, respectively). The native CBHII
protein is 447 amino acids in length, giving it an apparent
molecular weight of 46,000 daltons and is about 18-20%
carbohydrate by weight.

Conventional programs for improving cellulase activity or the

rate at which it is produced by fungi use mutation/selection
techniques. 1In these, a parent strain is subjected to
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ultraviolet light or chemical mutagens and the surviving mutants
are subject to screening techniques to identify mutants with the
desired properties. Using the techniques of genetic
engineering/molecular biology it is now possible to make
specific, desired changes in the structure of the enzyme to
better understand its mode of operation and to improve its
activity. '

Genencor is a fully-integrated industrial enzyme company which
has strong capabilities in protein biochemistry, microbial
physiology, fermentation, molecular biology, and bacterial and
fungal genetics. Successful expression in Aspergillus of
heterologous genes encoding commercially interesting enzymes
(proteases, lipases, cellulases and chymosin) has been achieved
and further modification of native proteins using a molecular
biology approach has led to recombinant enzymes with altered
substrate specificity, improved stability and improved catalytic
efficiency [2, 3, 4].

Genencor manufactures a low cost, ligquid cellulase product, GC
123, at commercial scale. This product is derived from T. reesei
and includes the major components of the cellulase system as well
as other activities, such as B-glucanases and B-D-xylanases.

To support the development of cellulase and to further explore
the potential for other carbohydrase products, we have generated
useful materials for biochemical and genetic studies. For
biochemical studies we have isolated cellulase components and
corresponding antibodies and have developed analytical
techniques, including specific isolated genes encoding CBHI and
EGI and have expressed these genes in research and production
strains of the fungus Aspergillus nidulans. Aspergillus awamori,
also a filamentous fungus, has been developed at Genencor as a
model heterologous expression system. Due to its relatively low
level of cellulolytic enzymes and its well described
transformation system similar to that of A. niger, this fungus
has been a very desirable host for the study of various
cellulases from T. reesei.

This report will summarize our work, supported in part by SERI
subcontract No. HK-7-07122-1, toward identifying the amino acid
residues in CBHII which are important to catalysis. Once
identified, it is reasoned that we can direct changes in
structure in which some would lead to improvement in function
(hydrolytic efficiency). We began by testing the hypothesis put
forth by Chen et al. [5] and Dr. Ross D. Brown, Jr. (personal
communication), namely that the catalytically important amino
acid residues are located at position 175 (173) and 184. We used
the approach of synthetic oligonucleotide directed site-specific
mutagenesis to impart these changes and used heterologous
expression in Aspergillus to obtain altered forms of the enzyme.
The test for enzymatic activity was performed after purification
of rCBHII’s from crude culture broths.
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In addition, we examined a second type of modification to CBHII
structure. This modification to CBHII structure generates a
smaller molecule which contains the putative substrate binding
site and catalytic site. The latter portion of CBHII (the
carboxy terminal end) will be omitted by deleting the 3’ end of
the gene beginning at the start of the third intron.

II. Obijectives

The objectives of the subcontract with SERI were to use the cbh2
gene to accomplish the following:

° Express "wildtype" ¢bh2 in Asperqgillus awamori.

° Modify the amino acid residues (175 {173} and 184) that
have been postulated to be important in catalysis and
express in A. awamori.

° Delete the 3’ end (carboxy terminal end) of the cbh2
gene and express in A. awamori.

Milligram quantities of the above (except 3 - see below) have
been provided to Dr. Michael E. Himmel at SERI.

ITTI. Approach
The CBHII structure-function studies were accomplished in the

absence of any crystallographic information. Our approach is
outlined in Figure 1.

IV. Molecular Biology

A. Recombinant CBHII

The nucleotide sequence and deduced amino acid sedquence
of the gene encoding CBHII is given in Figure 2. Both
the genomic and intronless DNA sequences encoding CBHII
and various plasmid vectors were used for expression of
mature CBHII in Aspergillus awamori [5]. We constructed
expression "cassettes" [6] containing the entire coding
regions for both genomic and intronless forms of the
cbh2 gene by introducing a unique BgllI site 24 base
pairs upstream of the start codon and a unique Nhel site
21 base pairs downstream of the stop codon (Figure 3).
These ¢cbh2 cassettes were inserted into the Aspergillus
awamori expression vector pGPT-pyrGl which employs the
glucoamylase promoter and terminator regions and a
selectable pyrG gene from A. nidulans (Figure 4).
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The cbh2 plasmid was used to tranform a pyrG auxotroph
of A. awamori. After growing transformants for 4-5 days
using maltose for induction of the glucoamylase
promoter, cultures were harvested by filtration.
Secretion of recombinant CBHII was examined by western
blotting analysis (see Figure 5). The western blot
results indicated that

1. the ¢bh2 coding region was successfully
transcribed and translated by A. awamori, and

CBHII signal sequence, resulting in efficient
secretion of rCBHIT.

2. A. awamori can recognize and process T. reesei

3. A. awamori can correctly splice intron
sequences in T. reesei genes.

4. A. awameri apparently glycosylates the CBHII
enzyme in a different manner than T. reesei,
giving the impression that it is
hyperglycosylated.

Evidence for enzyme activity was obtained by incubating
100ul of culture supernatant overnight in a 1% solution
of phosphoric acid swollen cellulase (PSC). Reactions
were stopped by boiling for 10 minutes. Residual PSC
was removed by centrifugation and 100ul of supernatant
was analyzed for production of total reducing sugar
using the method of Nelson-Somogyi [7, 8] and for
production of cellobiose by HPLC. An example of the
reducing sugar analysis is shown in Figures 6 and 7.
Cultures were harvested between 4 and 5 days since the
level of secreted protein and activity were found to be
maximal. HPLC analysis was used to confirm that the
product of reaction was cellobiose (Figure 8).
Visualization of a single cellobiose peak on the HPLC
trace shows that the rCBHII enzyme secreted by A.
awamori is active and its specificity has not been
affected by hyperglycosylation.

The screening of transformants for rCBHII was
accomplished using both PSC activity and an ELISA

assay. Throughout the study, we found similar results
(ranking of transformants) with both methods. However,
we had more confidence in the ELISA data (Table 1)
because we found variable "low level" cellulase activity
in control strains of Asperqgillus. Aspergillus produces
B-glucosidases and endoglucanases (not cellobio-
hydrolases) under specific culture conditions. The PSC
activity screen was designed to yield data which would
allow us to rank transformants. The early and overnight
incubation times were chosen for convenience and the
data does not reflect reaction kinetics.
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Modified rCBHII'’S

The region between aspartic acid residue 175 (D175) and
glutamic acid residue 184 (E184) of CBHII is
hypothesized to be in the active site and may be
involved in the initial proton donation and
stabilization of the resulting carbonium ion
intermediate, respectively [5, 9, 10] (Figure 9). To
confirm that these residues are, indeed, important in
catalysis and to further examine the relative activities
of rCBHII’s (modified in these positions) will lead to a
better understanding of cellulases and, moreover, may
result in an improved cellulase.

We prepared gene constructions (Figure 10) to impart the
following modified rCBHII molecules:

1. Glu-184 to Gln-184 (note: Gln-184 is denoted
either as Q184 or E184Q), and

2. Asp-173 and Asp-175 to Asn-173 and Asn-175
(note: Asn-173, 175 is denoted either as
N173, N175 or D173N, D175N).

Support for the hypothesis that these residues are
catalytically important will result if any or all of the
above listed modified forms of CBHII are inactive.

The important catalytic and cellulose binding domains
for CBHII are presumed to be located at one end of CBHII
(N-terminal end) [5, 11]). Therefore, the
carboxy-terminal end of CBHII appears to lack function,
beyond contributing to tertiary structure. We explored
this idea by deleting the latter half of CBHIX beyond
amino acid residue 232 (this point marks the beginning
of the third intron in the c¢bh2 gene). The modified
form was approximately one-half the size of the native
CBHII and, if active, may have a higher specific
activity.

Screens for transformants containing single or double
amino acid modifications were performed as described
above except that ELISA data served as the basis for
ranking transformants (Table 2). The top three
transformants were used to generate protein for
purification and characterization studies.

The truncated cbh2 gene (deletion form) was inserted
into appropriate plasmid vectors to transform
Aspergillus. Northern blots showed that abundant
quantities of mRNA were produced (Figure 11) and ELISA
data (Table 3) confirmed the presence of immunological
reactive material against CBHII in the culture broth.
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However, repeated attempts to visualize a smaller
protein on SDS and western gels failed. Furthermore,
with the exception of the first test for activity using
PSC, which gave mixed results, all subsequent tests for
activity yvielded negative results.

A logical reason for these observations is proteolysis.
The significant reduction in the size of CBHII will, of
course, affect the tertiary structure and disulphide
bonding pattern. The net result is likely a molecule
which is more sensitive to proteolysis. We will
continue work on this potentially very interesting form
of CBHII.

V. Protein Purification and Characterization

A.

Purification of wildtvpe recombinant CBHII by FPLC

Concentrated broth containing rCBHII at approximately
8mg/ml was equilibrated with 5mM sodium phosphate, pH
7.8, and then loaded onto a monoQ column (1 ml loaded at
a flow rate of 0.5ml/min). Bound protein was eluted off
the column using a step gradient. The elution buffer
used was 50mM sodium phosphate pH 7.5 + 0.5M NacCl.

The CBHII protein appeared in two fractions: the flow
through and the first elution peak. The first peak
eluted at 8% elution buffer (Figure 12).

SDS and western gel analysis of column fractions (Figure
13) confirmed that rCBHII binds weakly, if at all, to
monoQ under these conditons. It should be noted that
native CBHIXI behaves similarly and that we did not find
conditions of buffer, pH and ionic strength that allowed
binding of CBHII to the ion exchange resin.

Gel analysis showed that recombinant CBHII was of lower
mobility than native CBHII (Figure 14). The recombinant
CBHII gave a broad heterogeneous band due to
hyperglycosylation. Indeed, some of additional
glycosylation is N-linked glycosylation as evidenced by
experiments using endo glycosidase H (endo H). Endo H
cleaves glycosyl moieties from N-linked glycoproteins.
Treatment with endo H caused an increase in mobility of
rCBHII almost equal to native CBHII (Figure 14).

Purification of Recombinant D173N/D175N and E1840
CBHII’s

The above procedure was repeated using concentrated
D173N/D175N and E184Q broths. The elution profile for
the rE184Q broth was similar to that of the wildtype
rCBHIT broth (see Figure 15).
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The elution profile for the rD173N/D175N broth showed
significantly less protein in the flow through peak (see
Figure 16). SDS and Western analysis of this flow
through peak showed little to no detectable protein.
Additional cultures using positive D173N/D175N
transformants were generated and these contained higher
levels of immunologically reactive protein. The above
procedure was repeated and pure D173N/D173N rCBHII was
generated for characterization work.

Strain 12 Control (untransformed)

The same procedure used in the purification of the above
rCBH’s was repeated using A. awamori strain 12
(untransformed control) broth. The elution profile
showed only a slight protein peak in the flow through.
The first peak (corresponding to the 8% concentration of
elution buffer) was smaller than that seen with elution
of wildtype and E184Q rCBHII broths (Figure 17).

Specific Activity of Native and Recombinant CBHII’s on
PSC

One microgram each of the CBHII forms were incubated in
1% PSC in 50mM sodium acetate buffer, pH 4.8, for
various times. Total reducing sugar was determined in
the liquid fraction according to the method of Nelson
and Somogyi [7, 8]. The results are shown in Figure 18
and Table 3.

Native CBHII, rCBHII and the E184Q rCBHII show similar
activities on PSC after 30 minutes of incubation (Table
3). In contrast, the D173N, D175N rCBHII is completely
inactive and thus, one or both of these residues are
important in catalysis. In the next phase of work, we
propose to determine which of these residues is
responsible for catalytic function.

VI. Summary Statement and Future Work

Completion dates for work activities within this subcontract are
given in Table 4. Evaluation of transformants (screening) and
characterization studies required the most time.

This is the first report to our knowledge of the identification
of the catalytically important residue(s) in any cellulase.
Knowledge of this will allow us to focus on a limited region
within CBHIX for further study. We propose the following future
work activities.

1.

Determine if D173N and/or D175N or both are important in
catalysis.
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Modify the cysteine at position 172 (C€172) to an alanine
(A172). Compare gel patterns under reducing and
non-reducing conditions (Rationale is discussed in
separate proposal).

Modify the arginine at position 174 (R174) to an alanine
(A174). Determine effect on activity and pH profile
(Rationale is discussed in separate proposal).

In addition, we propose to continue work on the deletion form of

CBHIT.

VII. Materials and Methods

1.

Fungal Strains

Aspergillus awamori strain GCl2 (sometimes referred to
as simply "strain 12") was derived from strain UVK143f
(a glucoamylase hyper-producing mutant of strain NRRL
3112) by parasexual crossing of the following
auxotrophic mutants: A. awamori GC5 (pyrGS5S), a
uridine-requiring auxotroph isolated by selection on
5-flouro-orotic acid [12] following mutagenesis of
UVK143f with ultraviolet (this mutant is deficient in
the enzyme orotidine-5’-monophosphate decarboxylase); A.
awamori GC3 (argB3) which is an arginine-requiring
auxotroph isolated by filtration enrichment [13]
following nitrosoquanidine mutagenesis of UVK143f (this
mutant is specifically deficient in the enzyme ornithine
carbamoyl transferase).

Bacterial Strains, Cloning Vectors and Plasmids

Escherichia coli JM101 [14] was used for propagation of
all plasmids and as a host for bacteriophage M13mpl8 and
M13mpl9 [15].

The cloning vectors pUC218 and pUC219 are chimeric DNA
phage-plasmid molecules derived from puUCl8 and pUC19,
respectively [15]. These vectors contain the intergenic
region of the bacteriophage M13 [16] and when used in
conjunction with the helper phage M13K0O7 generate single
stranded DNA for use as template for site-directed
mutagenesis [17]. '

Construction of the Vector pGPT-pvyrG

The A. awamori transformation and expression vector,
PGPT-pyrG (glucoamylase promoter terminator-pyrG), was
constructed as follows: The vector (Figure 20) contains
the A. awamori glucoamylase promoter region [18] and the
A niger glucoamylase terminator [19]. This vector also
contains an origin of replication and ampicillin
resistance gene from pBR322 [20] and the pyrG gene from
Page 8




A. nidulans for selection of fungal transformants [21].
First, a 2.9 kb XhoI-BglII restriction fragment
containing the A. awamori glucoamylase promoter region
and a portion of the coding sequence was subcloned into
XhoI and BglII digested pUC219. Secondly, a BglII site
was introduced by oligonucleotide-directed mutagenesis
at a site 11 nucleotides upstream of the start codon for
glucoamylase. As a result, the 18 nucleotides including
the start codon were 5/ CATTAGATCTCAGCAATG 3. The
mutagenesis was verified by DNA sequence analysis.

Next, the A. niger glucoamylase terminator region was
obtained as a 1.7 Kb XbaI-HindIII fragment from plasmid
PBR-GRG1 [22]. This fragment was subcloned into pUCl00,
a pUCl8 derivative which contains the following
polylinker sites: EcoR1l, SacI, KpnI, Smal/Xmal, BamHl,
XhoI, BglII, Clal, Xbal, Sall/AccI/HinclIl, Pstl, SphI,
and HindIII (C. Barnett, unpublished). The resulting
plasmid, pUC-GT, was digested with XhoI and BglII, then
ligated with a 1.9 Kb XhoI-BglII fragment containing the
A. awamori glucoamylase promoter (described above). The
plasmid derived from this ligation, designated pUC-GPT,
was cleaved with XhoI and HindIII, and the 3.5 kb insert
was cloned into pBR-XClink [22] which had been digested
with the same enzymes. The vector which was produced,
pPBR-GPT, was then digested with PvuII and NruI and
dephosphorylated. Into this vector fragment we inserted
a 1.8 Kb Scal-Nael restriction fragment encoding the A.
nidulans pyrG gene [21] to derive the expression vector
pPGPT-pyrGl.

Transformation Procedure for Asperqgillus awamori

A. awamori strain GCl2 was protoplasted as described
[22] and transformed by an electroporation technigque
developed by Ward, et al. [23]. Approximately 4
transformants per microgram of DNA were obtained.

Culture Conditions

A. awamori CBHII transformants were grown in
gluccamylase induction medium containing 1 g/1 Bacto
Peptone, 20 g/1 Malt extract, 1 g/l Yeast extract
(Difco,all), 6 g/l NaNO,, 0.52 g KCl, 34 g/l
KH,PO,, 1.0 g/1 MgSO,°7H,0, 50 g/1 maltose,
lg/1 trace elements(1.0 g/1, FeSO,°7H,0, 8.8 g/l
Zns0,°7H,0, 0.4 g/1 CuSO,°5H,0, 0.15 g/1
MnSO, *4H,0, 0.10 g/1 Na,B,0,%10H,0, 50
mg/1l [NH,]gMo-0 4 4H;0), 10 ml/1 met-bio
solution (50 g/i L-methionine, 200 mg/l d-~Biotin), 0.1%
tween 80, 50 mg/l streptomycin. All cultures were
innoculated with conidia to a final concentration of
1X10°/ml and grown for 4 days at 37° on a rotary
shaker (New Brunswick Scientific Company, Inc. at 200
rpm). Cultures were filtered through glass wool
(Corning Glass Works) and filtrates collected for enzyme
purification.
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10.

Isolation and Analysis of Nucleic Acids

A. awamori DNA and RNA were isolated as described
previously [24]. Total genomic DNA samples from
selected A. awamori CBHII transformants were digested
with an appropriate restricion enzyme, fractionated on
0.5% agarose gels, blotted to Nytran (Schleicher &
Schuell, Keene, NH), and analyzed for the presence of
CBHII specific fragments by the method of Southern
[25]. Total RNA from A. awamori transformants was
electrophoretically fractionated on 1%
formaldehyde-agarose gels, blotted to Nytran membranes
and analyzed for CBHII specific mRNA by the Northern
blot method [26]. Probes used for hybridization were
radiocactively labeled by nick-translation [27].

Site Specific Mutagenesis

Oligonucleotide~directed site specific mutagenesis was
performed using the method described by Carter [17].

Enzvme Purification

One liter cultures of CBHII expressing transformants
were concentrated twenty-fold and buffer exchanged with
5mM sodium phosphate buffer, pH 7.8. Recombinant CBHIIY
protein was purified by FPLC using a Pharmacia MonoQ
cation exchange column equilibrated in 5mM sodium
phosphate buffer at pH 7.8. A 1 ml sample was loaded
onto the MonoQ column at a flow rate of 0.5 ml/mm.

Bound protein was eluted from the column using a step
gradient. The elution buffer used was 50mM sodium
phosphate pH 7.5 + 0.5M NacCl.

Protein Determination

See Pierce product 23220/23225, BCA Protein Assay
Reagent.

Reducing Sugar Determination

The spectrophotometric measurement of the release of
reducing sugar residues has been employed extensively in
following the action of polysaccharide hydrolases. This
method has been described by Nelson and Somogyi [7, 8].
The Somogyl reagent was filtered before use and the
absorbence at 510 nm was measured within a half-hour
after addition of the chromagen.

Page 10



11.

12.

13.

HPLC

Reaction supernatants were analyzed by HPLC on a Bio-Rad
HPX65A column at 80°C. Glucose and cellobiose (Sigma)
were used as standards.

Antibody analysis

Antibodies specific for T. reesei CBHII were isolated by
ion-exchange chromatography. Production of anti-sera to
CBHITI has been described previously [28, 29].

Immunoblotting (Western blotting) techniques were
performed as described previously [30]

Enzyme-linked-immunosorbent assays have been described
previously [22].

Endo H Treatment

Samples were buffer exchanged with 0.5M sodium citrate,
PH 5.0, then denatured at 95°C for five minutes. After
cooling to room temperature, samples were incubated with
purified endo-H (final concentration of endo-H was
0.2mg/ml in the reaction mixture). Reaction time was 24
hours at room temperature. Normal SDS PAGE and Western
blot methods were used for protein migration analysis.
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TABLE 1

ELISA SCREEN OF rCHBII TRANSFORMANTS:
CBHII IMMUNOLOGICAL REACTIVE MATERIAL IN SHAKE FLASK CULTURES

(4.5 DAYS)

Transformant # rCBHIT (ug/ml) Transformant # YrCBHIT (ug/ml)
Genomic 1la <0.05 Intronless 1la 28

1b <0.05 1b 30

2a <0.05 2a 12

2b <0,05 2b NA

3a 31 3a 11

3b 19 3b 12

4a 10 4a 36

4b 13 4b 35

Sa 2 Sa 16

5b 3 5b 8

6a 11 6a 47

6b 10 6b 38

7a 11 7a <0.05

7b 12 7b <0.05

8a <0.05 8a 14

8b <0.05 8h 19

9a 12 | %9a <0.05

9b 9 9b <0.05

10a 15 10a 51

10b 13 10b 53
Control 0 Control 0




TABLE 2

ELISA SCREEN OF MODIFIED rCBHII TRANSFORMANTS:
CBHII IMMUNOLOGICAL REACTIVE MATERIAL IN SHAKE FLASK BROTH CULTURES

(4.5 DAYS)
Transformant # rCBHII (ug/ml) Transformant # r¢BHIT (ug/ml
E184Q E1840Q
Genomic 1la 7 Intronless 1la 4
1b 7 1b 2
2a 16+ 2a 3
2b 17+ 2b 4
3a 20+ 3a 3
3b 14+ 3b 5
4a 13+ 4a <0.05
4b 13+ 4b <0.05
5a 14 S5a -
5b 14 5 ) -
6a 8 6a -
6b 9 6b -
7a <0.05 7a -
70 <0.05 7b -
8a <0.05 8a -
8b <0.05 8b -
9a 15 9a 6
9b »>20 9b 8
10a 3 1l0a 5
10b 3 10b 8
Control 0 Control 0
D173N, D175N D173N, D175N
Genomic 1 22 Intronless 1 30
2 <0.05 2 <0.05
3 <0.05 3 3
4 <0.05 4 15
S <0.05 5 18
6 <0.05 6 <0.05
7 5 7 5
8 <0.05 8 <0.05
9 <0.05 9 <0.05
10 <0.05 10 <0.05
Control 0 Control 0




TABLE 3

ELTSA SCREEN OF DELETION FORM OF rCBHITI TRANSFORMANTS:
CBHII IMMUNOLOGICAL REACTIVE MATERIAL IN SHAKE FLASK BROTH CULTURES

(4.5 DAYS)

Transformant # rCBHI uqg/ml
Deletion
Genomic 1 1

2 0.5

3 26

4 14

5 <0.05

6 9

7 <0.05

8 <0.05

9 1

10 <0.05
Control 0




TABLE 4

SPECIFIC ACTIVITY OF NATIVE AND RECOMBINANT
FORMS OF CBHII ON CELLULOSE (PSC)

CBHII SPECIFIC ACTIVITY
(pmol/min/mg)
Native | 9.2
Recombinant 8.7
Recombinant E184Q 9.0

Recombinant D173N, D175N <0.01




TABLE 5

WORK ACTIVITY TIMELINE

ACTIVITY COMPLETION DATE

WT E1840 D173N,D175N ACOOH

Gene constructions 7/87 7/87 9/87 11/87
+ transformants 8/87 8/87 10/87 12/87
EIA 8/87 8/87 10/87 12/87
PSC (RS, HPLC) 8/87 8/87 10/87 12/87
Western blots (+/-endo H) 8/87 - - -

1/88 - - -
Northern blots 12/87 - - 1/88
Southern blots 10/87 11/87 12/87 1/88
Culture broth (> 500 ml) 8/87 8/87 10/87 2/88
Purification 2/88 3/88 6/88 -
Characterization 4/88 5/88 6/88 -

(gels, pI, activity)




FIGURE 1
CBHII STRUCTURE-FUNCTION STUDIES
Site-directed mutagenesis
Subcloning into pGPTPYreG
Transformation of A. awamori
Isolate and purify transformants
Preliminary shake flask cultures
Preliminary/screening assays

(EIA to assay CBHII)——3 <>(-——~ (CBHII activity assays)

Selection of representative strains
(e.g., high, low, and zero producers)

Molecular biology analysis Protein biochemical analysis
(Southern and Northern blots) (high produiing strains only)

Shake flask cultures (>500ml)
(Western blots)

Characterization
(gels, activity, +/- endo H)
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FIGURE 3

Nucleotide Sequeﬁce of 5' and 3'cbh2 Regions

. 24 nucleotides ] . 21 nucleotides
Bgl I Met Stop Nhe I
. — — |
- - - AGATCTCCCTCTGTGTATTGCACCATG- - ---=--=-=-=- TAAGGCTTTCGTGACCGGGCTAGC- -
(A) | J (TCA)
Genomic or Intronless
cbh2 Gene

The 5' end of the CBHII gene was mutagenized to insert a Bgl II
restriction site and the 3' end was mutagenized to insert an Nhe
I restriction site to facilitate fushion to vector promoter and

terminator elements. All mutageneses were performed using primer
extension mutagenesis.




FIGURE 4

pGPT-cbh2

expression vectors
' GAM : GAM
promoter ‘ terminator

Balll N\ Nhe UXba |

cbh2 coding region
cassettes

The Asperqillus expression vector, pGPT-pyrGl has the
glucoamylase (GAM) promoter and the GAM terminator with Bgl II
and Xba I sites to facilitate insertion of CBHII. Insertion of
the CBHII gene into pGPT-pyrGl for expression in A. awamori.




LEFT GEL: Coomassie blue stained 5DS polyacrylamide gel of #elected A. awamori CBHII
transformants.

RIGHT GEL: Duplicate SDS polyacrylamide gel transferred to nitrocellulose, incubated with
rabbit polyclonal alpha-CBHII, and developed with 1I-125 conjugated Staphlecoccus
aureus protein A (western botted).

BOTH PANELS: Lane A: Purified genomic rCBHII from A. awamori.

Lane B: Purified T. reesel CBHII (35 3/4 g}.

Lane C: Partially purified rCBHII from A. awamori culture broth including
genomic rCBHII and a 68Kd unreslated impurity.

Lane D: Purified intronless rCBHII from A. awamorl.
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FIGURE 6
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Soluble reducing sugar as cellobiose equivalents (ug/ml)
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Activity Screen of CBHII
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FIGURE 8

meLTe

pure standards

CELLOBIOSE
GLuUCOSE

1] ﬁ-—-__‘._‘-“‘_
= —nd
15. 008 .
1 R T | 1 § | I
2 L | [ 1 ] 10 12 14 1 1
nisvTEs
25.088
A. awamori CBH Nl transformant
g -
o M
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]
168. 000 |
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NINUTES

Reaction products of recombinant CBHII (rCBHII) analyzed by HPLC

on a Bio-Rad HPX6S5A column using 85°C water for elution.

figure shows glucose and cellobiose at 1 mg/ml as standards.
Botoom figure shows reaction products (cellobiose) from an

overnight incubation of 100 3/41 of recombinant CBHII culture

filtrate with phosphoric acid swollen cellulose (PSC).

Top




FIGURE 9

HYPOTHETICAL MECHANISM FOR GLUCAN HYDROLYSIS
CATALYZED BY B-D-GLUCANASES
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IvS

Bgl Ii
ATG
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Bgl II
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F1GURE 10

cbh2 Coding Region Cassettes

Genomic Sequences

173 175 184 Nhe |

Asp Asp Glu
GAT GAT GAA TAA

IvS WS

173 175 184 Nhe |

Asp Asp Gin
GAT GAT CAA TAA

Vs VS

173 175 184

Asn Asn Giu Nhe |

AAT AAT GAA TAA

VS IvS

Wild-type

Q184 mutants

N173, N175 mutants

Bgl II

ATG

Byl II

8g! Il

Intronless Sequences

173 175 184
Asp Asp Glu Nhe {
GAT GAT GAA TAA

173 175 184 '
Asp Asp Gin Nhe 1

173 175 184
Asn Asn Glu Nhe




o FIGURE 11

NORTHERN BLOT OF COOH-rCBHII TRANSFORMANTS

Lanes A-D are RNA from transformants 2-5. Lanes E and F are
negative and positive controls, respectively.




FIGURE 12

PURIFICATION OF WILDTYPE CBHII ENZYME

FPLC TRACE:
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FIGURE 13

SDS AND WESTERN GEL ANALYSIS OF PROTEINS ELUTED COFF - -
MONO Q COLUMN R —
WILD TYPE rCBHII PURIFICATION

Lanes A-J are column fractions. Lanes A-C are fiow through; D-E
are peakl; F-J are peaks 2-6; K is column starting material; L lis

native CBHII (note: impure}.




FIGURE 14

SDS AND WESTERN GELS ANALYSIS OF +/- ENDO H TREATED
RECOMBINANT AND NATIVE CBHII.

Lane A is standards; lane B is endo H: lanes C and D are rCBHII
without and with endo H; and lanes E and F are native CBHII (top
band) with and without endo H.
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FIGURE 15

PURIFICATION OF Q184 MUTANT CBHII ENZYME

FPLC TRACE:
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FIGURE 16

FPLC TRACE: PURIFICATION OF D173N/D173N MUTANT CBHII ENZYME
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FIGURE 17
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FIGURE 18

Cellobiose (mg/mi)
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Hydrolysis of PSC Using
Native and Recombinant CBHII's
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